Active power transducer for three phase, three wire, unbalanced loads with two analogue outputs

**FEATURES**

The MC2W3 is a AC measuring converter with two independent output signals.

MC2W3C can provide two outputs of 10mA maximum each (2 x 10mA) or 1 x 20mA (O/P2).

MC2W3D can provide two outputs, one of 10mA and one of 20mA maximum (O/P1: 1 x 10mA + O/P2: 1 x 20mA).

A third variant is available with a pulsed kilowatthour output designated MC2W3P – see separate datasheet.

A green “Supply On” LED indicates the auxiliary supply is present.

The voltage inputs can be connected directly to systems up to 440V or calibrated for voltage transformer (V.T.) inputs. The current inputs can accept standard 1A or 5A secondary current transformer (C.T.) inputs.

The outputs are true calorimetric values proportional to the level and direction of flow of active power. They are designed for use on three phase, three wire systems with balanced or unbalanced loads.

The outputs are protected against short circuit or open circuit conditions and can be directly added or subtracted with other Megacon transducer outputs.

### FEATURES

**Auxiliary Supply**
- 100-120, 200-240, 380-440V AC
- 18-36V, 36-72V DC Nominal +/- 10%

**Current Input**
- 1A or 5A secondary C.T.

**Voltage Input**
- up to 440V direct or via voltage transformer (V.T.)

**Accuracy**
- Class 1 between 30 to 120%

**Output**

**MC2W3C**
- Maximum combined output: 20mA
- Typical: 2 x 1/0/10mA
- Or: 1 x 4/20mA

**MC2W3D**
- Maximum combined output: 30mA
- Typical: 1 x –1/0/10mA
- 1 x 4/20mA

**Outputs – General**
- Milliamp outputs: max. 5000 load
- Voltages outputs: min. 5000 load

---

**ORDERING INFORMATION**

<table>
<thead>
<tr>
<th>Auxiliary voltage</th>
<th>System voltage</th>
<th>C.T. ratio</th>
<th>Kilowatt range</th>
<th>Output 1</th>
<th>Output 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

The MEGACON policy is one of continuous improvement, consequently equipment supplied may vary in detail from this publication.